

Algorithmik für schwere Probleme

Herbstsemester 2025

Prof. Dr. Dennis Komm Dr. Hans-Joachim Böckenhauer Dr. Richard Kralovič

Lösungsvorschläge – Blatt 11

13. Mai 2025

Lösung zu Aufgabe 12

a) Da
$$U = \bigcup_{i=1}^k D_{\mathcal{C},i}$$
, gilt

$$w_{\mathcal{C}}(U) = \sum_{x \in U} w_{\mathcal{C}}(x) = \sum_{i=1}^{k} \sum_{x \in D_{\mathcal{C},i}} w_{\mathcal{C}}(x)$$
$$= \sum_{i=1}^{k} \sum_{x \in D_{\mathcal{C},i}} \frac{1}{|D_{\mathcal{C},i}|} = \sum_{i=1}^{k} \frac{|D_{\mathcal{C},i}|}{|D_{\mathcal{C},i}|}$$
$$= k = |\mathcal{C}|.$$

- b) Nehmen wir umgekehrt an, dass es ein x_j gibt mit $w_{\mathcal{C}}(x_j) > 1/(l-j+1)$. Sei $1 \leq i \leq k$, sodass $x_j \in D_{\mathcal{C},i}$. Dann ist $|D_{\mathcal{C},i}| < l-j+1$. Das bedeutet, S_i deckt höchstens l-j neue Elemente ab. Aufgrund der Reihenfolge der Elemente würde die Menge S aber mindestens die l-j+1 Elemente x_j,\ldots,x_l neu abdecken. Da S das Element $x_j \in D_{\mathcal{C},i}$ enthält, kann S keine der Mengen S_1,\ldots,S_{i-1} sein. Dann hätte der Algorithmus aber statt S_i die Menge S wählen müssen, da sie mehr neue Elemente abdeckt. Somit kann es kein solches Element x_j geben.
- c) Es gilt nach Teilaufgabe a),

$$|\mathcal{C}| = w_{\mathcal{C}}(U) = \sum_{x \in U} w_{\mathcal{C}}(x) \le \sum_{S \in \mathcal{C}_{\text{opt}}} w_{\mathcal{C}}(S).$$

Für jede Menge $S \in \mathcal{F}$ gilt aber mit $S = \{x_1, \dots, x_l\}$ wie in Teilaufgabe b),

$$w_{\mathcal{C}}(S) = \sum_{j=1}^{l} w_{\mathcal{C}}(x_j)$$

$$\leq \sum_{j=1}^{l} \frac{1}{l-j+1}$$

$$= \sum_{i=1}^{l} \frac{1}{i}$$

$$= har(l)$$

$$\leq har(|S_{max}|)$$
.

Somit ist

$$|\mathcal{C}| \le \sum_{S \in \mathcal{C}_{\text{opt}}} \text{har}(|S_{\text{max}}|)$$
$$= |\mathcal{C}_{\text{opt}}| \cdot \text{har}(|S_{\text{max}}|).$$

d) Es gilt $har(n) \le ln(n) + 1$. Damit ist

$$\frac{|\mathcal{C}|}{|\mathcal{C}_{\text{ont}}|} \le \ln(|S_{\text{max}}|) + 1 \le \ln(|U|) + 1 = \ln(|U| \cdot e).$$

Falls $|\mathcal{F}| \geq 3$, gilt $e \leq |\mathcal{F}|$, also $|\mathcal{C}|/|\mathcal{C}_{\text{opt}}| \leq \ln(|U| \cdot |\mathcal{F}|)$. Wenn \mathcal{F} aber nur ein oder zwei Elemente enthält, lässt sich das Problem in polynomieller Zeit exakt lösen.

e) Ein Durchlauf der Schleife des Algorithmus lässt sich in Zeit $|\mathcal{F}| \cdot |U|$ berechnen. Die Schleife wird höchstens $|\mathcal{F}|$ mal durchlaufen. Sie wird aber auch höchstens |U|-mal durchlaufen, weil in jedem Schritt die Menge U_{free} um mindestens ein Element kleiner wird. Wir können die Anzahl Durchläufe der Schleife also abschätzen durch

$$\min\{|U|, |\mathcal{F}|\} \le (|U| \cdot |\mathcal{F}|)^{1/2}.$$

Insgesamt ist die Laufzeit des Algorithmus also in $\mathcal{O}((|U| \cdot |\mathcal{F}|)^{3/2}) = \mathcal{O}(n^{3/2})$.