

Algorithmik für schwere Probleme

Prof. Dr. Dennis Komm Dr. Hans-Joachim Böckenhauer https://courses.ite.inf.ethz.ch/ schwere_prob_23/

Übungsaufgaben – Blatt 4

Zürich, 14. März 2023

Aufgabe 4

Wir untersuchen nochmals das Problem $\text{Lang}_{\text{Max-Sat}}$, das wir schon von Übungsaufgabe 3 kennen. In dieser Aufgabe wollen wir zeigen, dass jede vorgegebene Instanz (Φ, k) in Polynomzeit auf eine Instanz mit höchstens k Variablen und weniger als 2k Klauseln reduziert werden kann. Dazu setzen wir ohne Beweis die folgende Aussage voraus.

Satz. Ein Graph mit Bipartition (P,Q) hat ein P saturierendes Matching genau dann, wenn für jede Teilmenge $S \subseteq P$ gilt, dass $|N(S)| \ge |S|$. Es gibt ein Polynomzeitalgorithmus, der entweder

- 1. ein P saturierendes Matching oder
- 2. eine bezüglich der Teilmengenrelation minimale Teilmenge $S \subseteq P$ mit |N(S)| < |S| findet.

Sei Φ eine beliebige KNF-Formel über n Variablen mit m Klauseln. Der Variablen-Klausel-Inzidenzgraph G_{Φ} von Φ ist ein Graph mit Bipartition (X,Y), wobei X aus einem Knoten pro Variable von Φ besteht und Y aus einem Knoten pro Klausel von Φ . Ein Variablenknoten ist genau dann zu einem Klauselknoten adjazent, wenn die Klausel die entsprechende Variable enthält – ob negiert oder nicht, ist egal. Beweisen Sie nun folgende Aussagen.

- (a) Aus $m \ge 2k$ folgt $(\Phi, k) \in Max-Sat$.
- (b) Wenn G_{Φ} ein X saturierendes Matching hat, hat Φ eine Belegung, die mindestens |X| Klauseln erfüllt.
- (c) Wenn G_{Φ} kein X saturierendes Matching hat, finden wir in Polynomzeit eine Kronenzerlegung (C, H, B) von G_{Φ} mit $C \subseteq X$ und $H \subseteq Y$.
- (d) Falls G_{Φ} eine Kronenzerlegung (C, H, B) hat, dann erfüllt jede Belegung von Φ , welche die Anzahl erfüllter Klauseln maximiert, alle Klauseln, die von Knoten in H repräsentiert werden.
- (e) Die vorgegebene Instanz (Φ, k) lässt sich in Polynomzeit auf einen Kern mit höchstens k Variablen und weniger als 2k Klauseln reduzieren.

10 Punkte

Abgabe: Bis Dienstag, den 21. März 2023, nach der Vorlesung per E-Mail an den Übungsgruppenleiter Moritz Stocker.